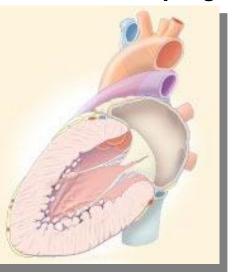
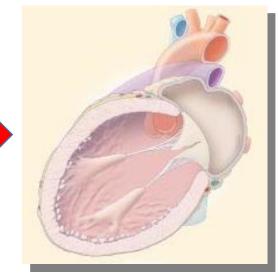


Reverse Remodeling in Heart Failure with Reduced EF: How can we achieve it?

James L. Januzzi Jr MD FACC FESC Hutter Family Professor of Medicine, Harvard Medical School Cardiology Division, Massachusetts General Hospital Clinical Trials, Baim Institute for Clinical Research Trustee, American College of Cardiology

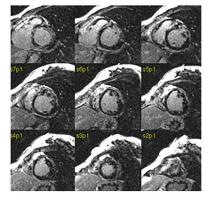

- Grant support from Novartis Pharmaceuticals, Applied Therapeutics, and Innolife
- Consulting income from Abbott Diagnostics, Janssen, Novartis, Quidel and Roche Diagnostics
- Clinical endpoint committees/data safety monitoring boards for Abbott, AbbVie, Amgen, CVRx, Janssen, MyoKardia, and Takeda
- Trustee, American College of Cardiology


Cardiac remodeling and HF progression

- Cardiac remodeling is defined as change in size, shape, and performance of the myocardium
- Dilation may affect all 4 chambers of the heart
- Reduction in performance includes reduced LV systolic and diastolic function

Through numerous acute and/or ongoing insults (including activation of the RAAS and SNS) normal myocardium becomes progressively remodeled

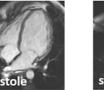
Normal heart


Remodeled heart

Variables predictive of reverse cardiac remodeling

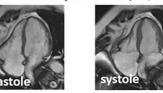
Parameters	Variables
Clinical parameters	Non-ischemic HFrEF Shorter HF duration Female sex Absence of LBBB
Therapies	Guideline-directed medical therapy CRT
Echo/CMR	Lower LVEF, larger volumes Greater contractility on GLS Absence of LGE
Biomarkers	Lower NT-proBNP Lower hs-cTn Lower sST2 Other markers

LGE


NO LGE

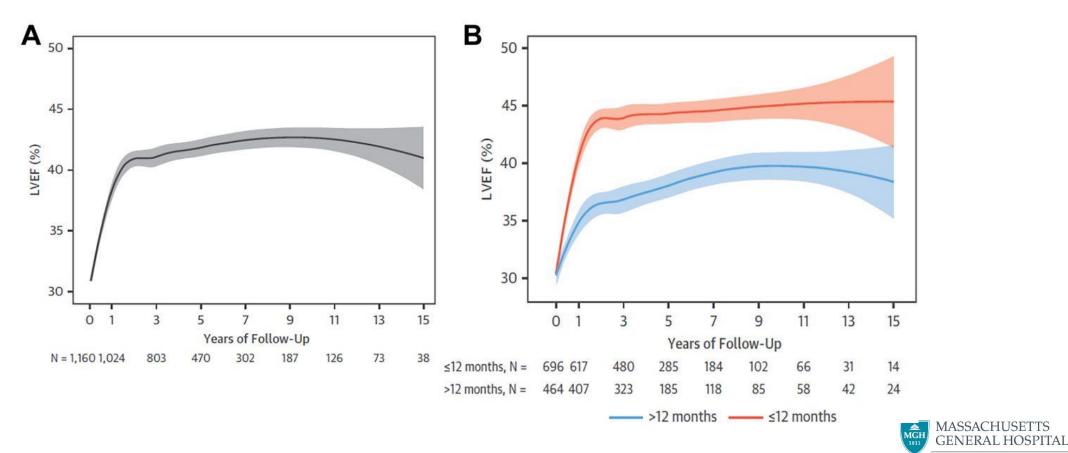
BASELINE (LVEDV 122 ml/m², LVEF 41%)

2-year FOLLOW-UP (LVEDV 136 ml/m², LVEF 29%)

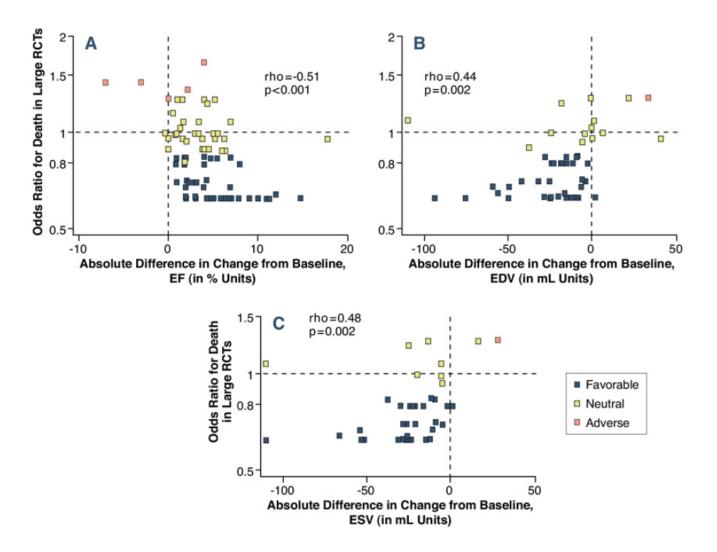


BASELINE (LVEDV 148 ml/m², LVEF 18%)

2-year FOLLOW-UP (LVEDV 74 ml/m², LVEF 50%)



Aimo, et al, J Am Coll Cardiol, 2019

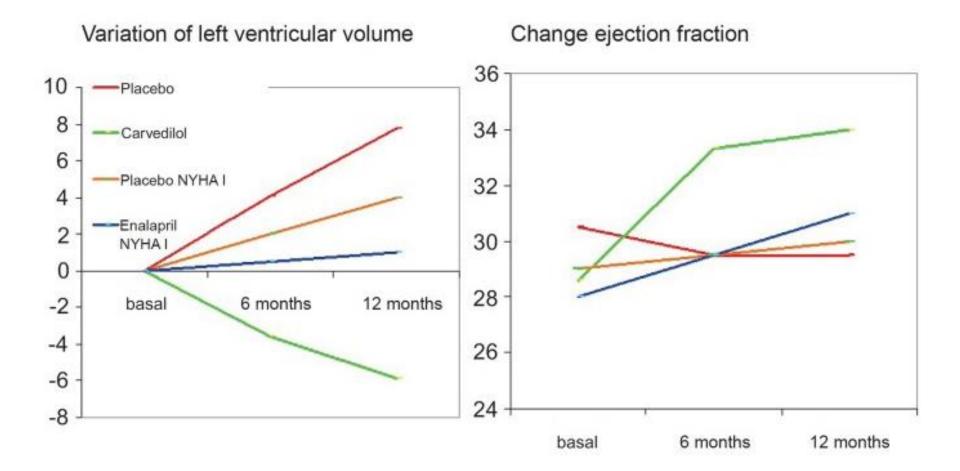

LVEF trajectory after GDMT

An "inverted U shape" trajectory of LVEF is seen with early reverse remodeling followed by a plateau phase and, in some cases, a decline, typically associated with worse prognosis.

HEART CENTER

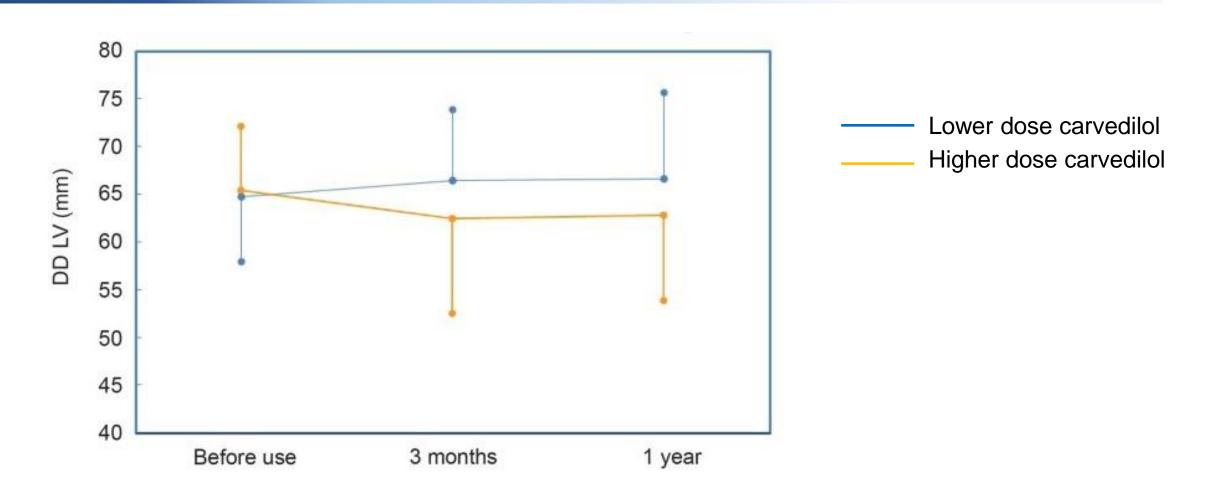
Reverse remodeling and outcomes

Heart failure therapies that lead to "reverse" remodeling also foster significant improvement in prognosis

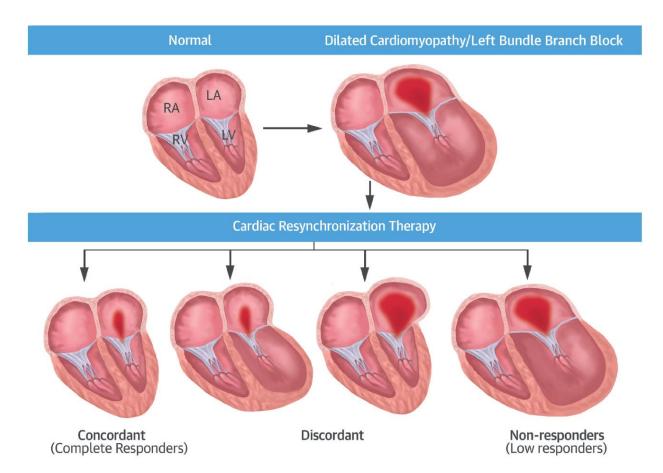

Kramer et al, et al J Am Coll Cardiol, 2010

Guideline-directed medical therapy may improve remodeling indices in HFrEF

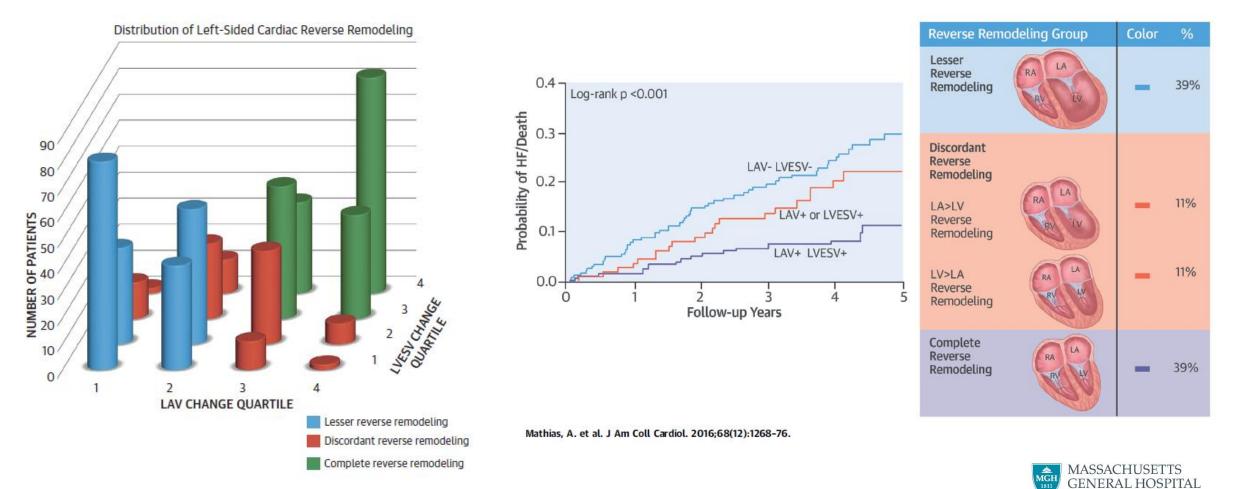
Therapy	Impact on remodeling in HFrEF
Cardiac resynchronization therapy	Strong
Beta blockers	Strong
Renin-angiotensin inhibitors	Moderate to strong
Mineralocorticoid receptor antagonists	Moderate
SGLT2 inhibitors	No clinical data
ARNI	Strong


Effects of Beta Blockers and ACE inhibitors on remodeling

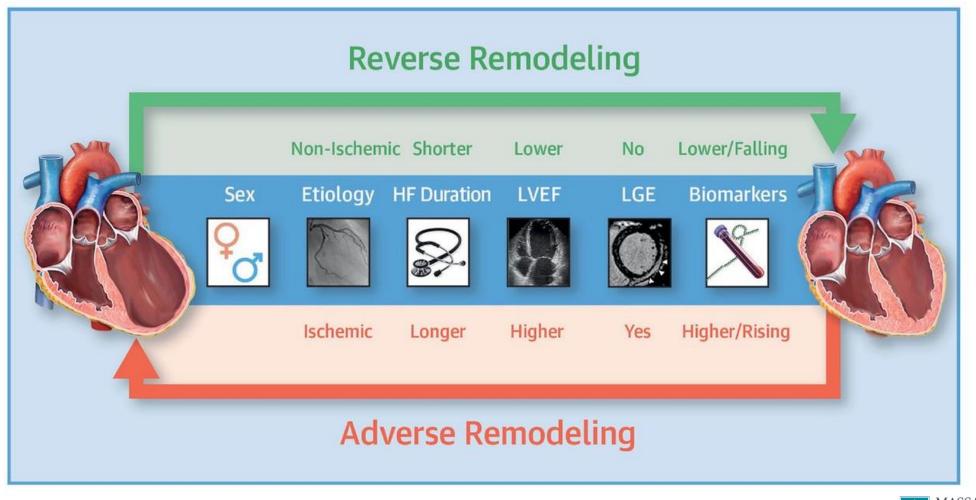
MASSACHUSETTS GENERAL HOSPITAL HEART CENTER


Cohn JN et al JACC 2000; 35: 569-82.

Impact of beta blockers is dose-dependent


Various responses to CRT

- CRT exerts variable—and often significant reverse remodeling effects
- Changes following CRT include reduced LV size, improved LV function, reduction in LA volumes, and improvement in MR



Importance of complete left sided RR

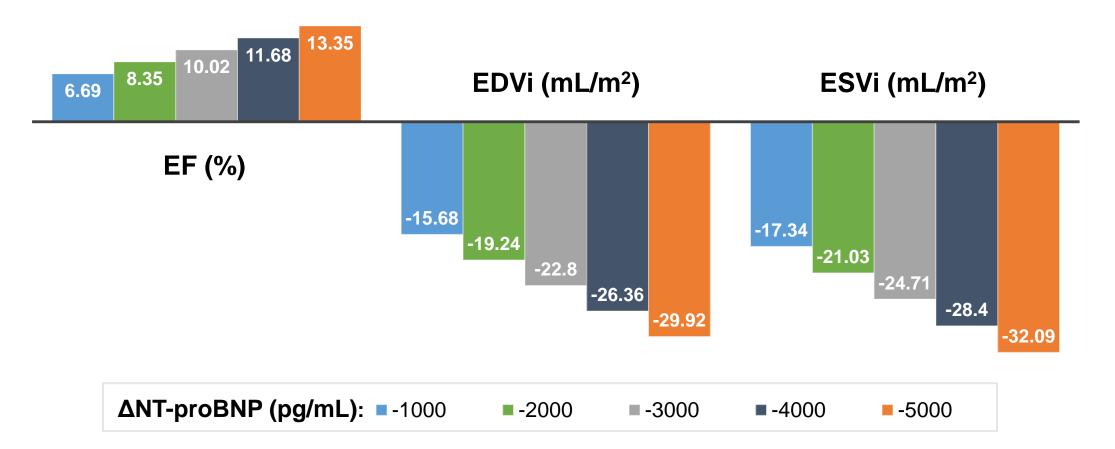
Predicting remodeling

Aimo, A. et al. J Am Coll Cardiol HF. 2019;7(9):782-94.

Biomarkers predictive of remodeling

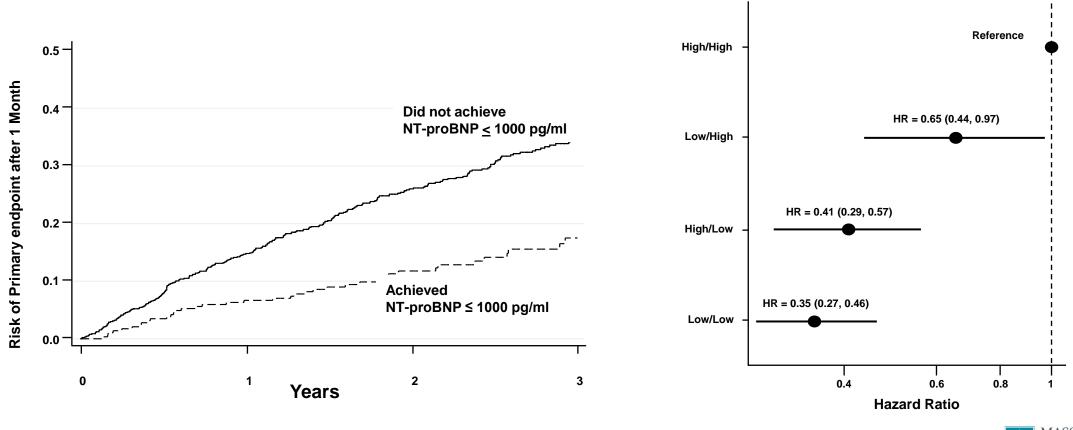
• BNP, NT-proBNP

• Soluble ST2: a biomarker of myocardial fibrosis and remodeling


• High sensitivity cardiac troponin

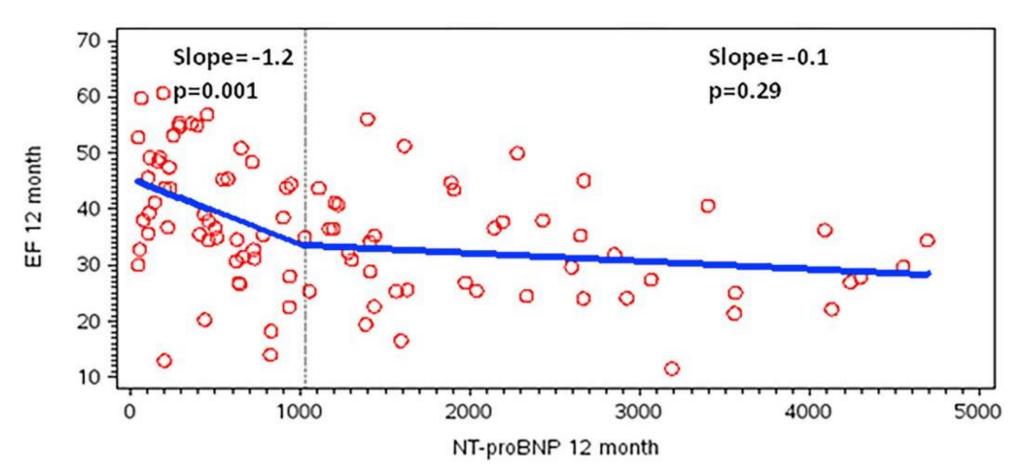
• Collagen markers, mimecan, IGFBP7

Change in LV structure and function at 1 year by NT-proBNP reduction


EF, ejection fraction; EDVi, end-diastolic volume index; ESVi, end-systolic volume index; LV, left ventricular; NTproBNP, N-terminal-pro-B type natriuretic peptide. Daubert MA, et al. *JACC Heart Fail.* 2019;7:158–168.

GUIDE-

GUIDing Evidence Based Therapy Using Biomarker Intensified Treatmen


30 day NT-proBNP in PARADIGM

Zile et al. J Am Coll Cardiol. 2016 Dec 6;68(22):2425-2436.

MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

Reverse cardiac remodeling begins to accelerate at an NT-proBNP of 1000 pg/mL

EF, ejection fraction NT-proBNP, N-terminal-pro-B type natriuretic peptide. Daubert MA, et al. JACC Heart Fail. 2019;7:158–168.

Guideline-directed medical therapy may improve remodeling indices in HFrEF

Therapy	Impact on remodeling in HFrEF
Cardiac resynchronization therapy	Strong
Beta blockers	Strong
Renin-angiotensin inhibitors	Moderate to strong
Mineralocorticoid receptor antagonists	Moderate
SGLT2 inhibitors	No clinical data
ARNI	Strong

What is known about ARNI and remodeling?

- Martens et al, Cardiovasc Ther, 2018
 - 125 patients with HFrEF treated for median of 118 days
 - LVEF improved (29.6 ± 6% vs 34.8 ± 6%; P < .001) and left ventricular end-systolic (LVESV) and end-diastolic volume (LVEDV) decreased (LVESV; 147 ± 57 mL vs 129 ± 55 mL; P < .001 and LVEDV; 206 ± 71 mL vs 197 ± 72 mL; P = .027)
 - Diastolic function improved
 - Dose-dependent effect was noted for changes in LVEF (P < .001) and LVESV (P = .031), with higher doses of sacubitril/valsartan leading to more reverse remodeling

HEART CENTER

What is known about ARNI and remodeling?

- Kang, et al, Circulation 2019
 - 118 patients with heart failure with chronic functional MR secondary to LV dysfunction (mean LVEF at baseline of 34%) randomized to either sacubitril/valsartan or valsartan
 - MR improved with sacubitril/valsartan versus valsartan
 - LV end-diastolic volume index was significantly different in those treated with sacubitril/valsartan (P=0.044) but LVEF was no different between groups (+2.5 vs +2.6%; P=0.84)

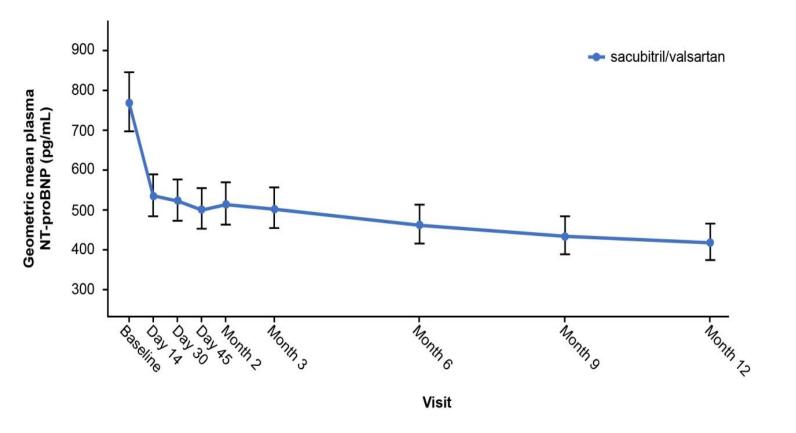
Meta analysis

~								Mean Difference	Mean Difference
Study or Subgroup		n SD	Total	Mean	<u>SD</u>	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
1.1.1 LVEF change in HFr									
Almufleh (17) 2017		33 7.8		30.14		48		· 영상 영상 : · · · · · · · · · · · · · · · · · ·	
De Diego (18) 2018	3	81 6				250			
Groba-Marco [26] 2018	3	30 7.9	17	35.47	10.3	17	1.3%	-5.47 [-11.64, 0.70]	
Kalantari [27] 2018	3	32 7	36	35	57	36	4.8%	-3.00 [-6.23, 0.23]	
Kang DH [19] 2018	34	.9 7.1	51	37.7	8.1	51	5.8%	-2.80 [-5.76, 0.16]	
Marques, R.R.B 7M 2018	33	.6 6.4	57	37.3	10.2	57	5.2%	-3.70 [-6.83, -0.57]	
Martens [25] 2018	29	.6 5.9	125	34.8	6.2	125	22.4%	-5.20 [-6.70, -3.70]	
Maurin [23] 2017	28	.4 7.7	80	31.9	8.2	80	8.3%	-3.50 [-5.96, -1.04]	
Nazzari (20) 2017	27	.4 6.9	43	36.4	12.4	43	2.8%	-9.00 [-13.24, -4.76]	
Subtotal (95% CI)			707			707			•
1.4.1 LVESV(mL)									
Almufleh (17) 2017	143.7	91.5	24	165	91.5	24	3.0%	-21.30 [-73.07, 30.47]	· · · · · · · · · · · · · · · · · · ·
Kalantari (27) 2018	148	50	36	170	58	36	13.0%	-22.00 [-47.01, 3.01]	
Kang DH (19) 2018	105.2	51.1	51	122.9	43.7	51	23.9%	-17.70 [-36.15, 0.75]	
Martens (25) 2018	129	55	125	147	57	125	42.2%	-18.00 [-31.89, -4.11]	
Maurin (23) 2017	142.7	70.1		158.9	68		17.8%	-16.20 [-37.60, 5.20]	
Subtotal (95% CI)			316			316	100.0%	-18.23 [-27.25, -9.20]	-
Heterogeneity: Chi ² = 0.14,				Ś					
Test for overall effect: $Z = 3$.	96 (P < (0.0001)							
1.4.2 LVEDV(mL)									
Almufleh (17) 2017	207.5	3 546	25	221.4	3 546	25	0.0% -	13.90 [-1979.67, 1951.87]	+
De Diego [18] 2018	119	15	250	141	17	250	94.0%	-22.00 [-24.81, -19.19]	
1.4.5 LAV(mL)									
Kalantari [27] 2018	87	30	36	96	39	36	16.1%	-9.00 [-25.07, 7.07]	
Kang DH [19] 2018	104.6	71.4		122.9	87.6	51	4.3%	-18.30 [-49.32, 12.72]	
Maurin [23] 2017		22.24		69.92		80	79.6%	-6.72 [-13.94, 0.50]	
Subtotal (95% CI)	05.2	22.24	167	03.32	24.52		100.0%	-7.59 [-14.03, -1.14]	
Heterogeneity: Chi ² = 0.54,	df = 2 P	= 0.76)							
Test for overall effect: $Z = 2$.									
4.4.6.13.8.14-6-03									
1.4.6 LVMI(g/m2)						~ *			
Almutleh (17) 2017	113.66	16.42	31 31	128.1	16.42		100.0%	-14.44 [-22.61, -6.27]	
Subtatal (05% CI)			51			51	100.0%	-14.44 [-22.61, -6.27]	
Subtotal (95% CI)									
Heterogeneity: Not applicat		0000							
		0.0005)							
Heterogeneity: Not applicat		0.0005)							-50 -25 0 25

Pooled studies of sacubitril/valsartan in HFrEF suggested an effect on LVEF, LV volumes, LA volumes, and LV mass.

Wang, et al, J Am Heart Association, 2019; 8:e012272

Prospective Study of Biomarkers, Symptom Improvement and Ventricular Remodeling During Entresto Therapy for Heart Failure (PROVE-HF; NCT02887183)


James L. Januzzi MD^{1,2}, Margaret F. Prescott PhD³, Javed Butler MD MPH MBA⁴, G. Michael Felker MD MHS⁵, Alan S. Maisel MD⁶, Kevin McCague MA³, Alexander Camacho PhD¹, Ileana L. Piña MD MPH⁷, Ricardo A. Rocha MD³, Amil M. Shah MD MPH⁸, Kristin M. Williamson PharmD³, and Scott D. Solomon MD⁸ on behalf of the PROVE-HF Investigators

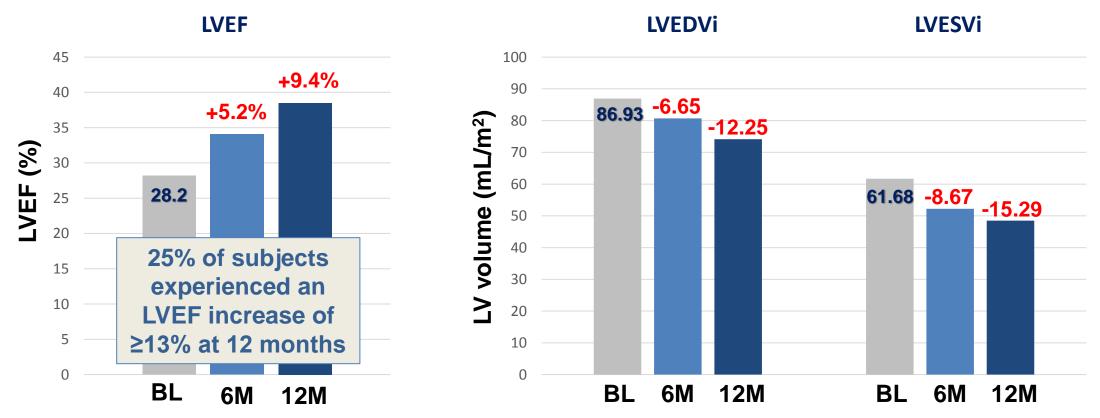
¹Massachusetts General Hospital, ²Baim Institute for Clinical Research, Boston, MA, USA; ³Novartis Pharmaceuticals, East Hanover, NJ, USA; ⁴University of Mississippi Medical Center, Jackson, MS, USA; ⁵Duke University Medical Center and Duke Clinical Research Institute, Durham, NC, USA; ⁶University of California, San Diego School of Medicine, San Diego, CA, USA; ⁷Detroit Medical Center, Detroit, MI, USA; ⁸Brigham and Women's Hospital, Boston, MA, USA

NT-proBNP concentrations

Rapid and significant reduction of NT-proBNP was observed, with majority of reduction within the first 2 weeks

Time point N		Median NT-proBNP (25th, 75th percentile), pg/mL			
Baseline	760	816 (332, 1822)			
Day 14	754	528 (226, 1378)			
Day 30	740	546 (211, 1321)			
Day 45	734	514 (192, 1297)			
Month 2	721	535 (210, 1299)			
Month 3	719	488 (211, 1315)			
Month 6	699	473 (179, 1163)			
Month 9	659	444 (170, 1153)			
Month 12	638	455 (153, 1090)			

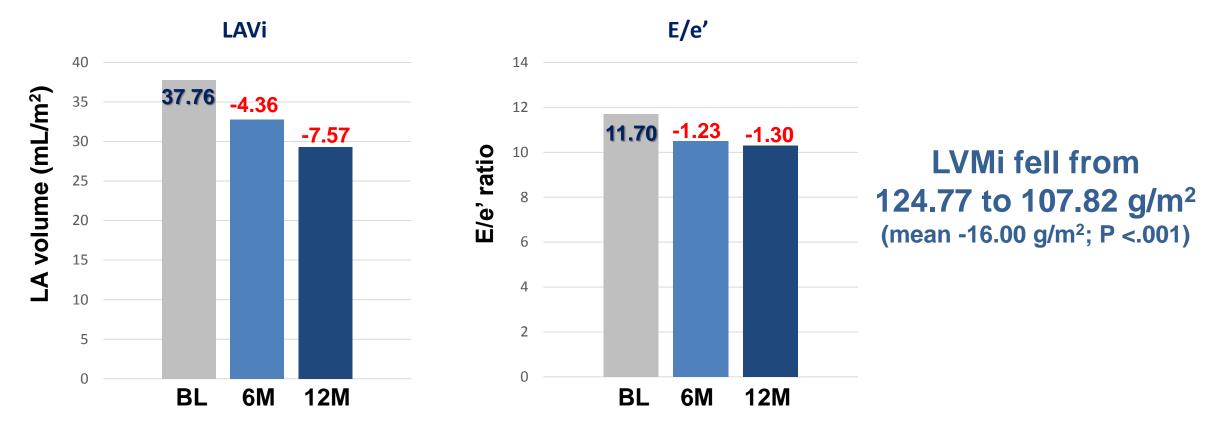
- From baseline to 12 months, significant correlations were observed between the change in NT-proBNP concentration and cardiac remodeling parameters.
- Parallel latent growth curve analyses demonstrated strong association between early NT-proBNP change and subsequent reverse cardiac remodeling.


Parameter	Pearson r (IQR)	P value
NT-proBNP (pg/mL) / LVEF (%)	-0.381 (-0.448, -0.310)	<.0001
NT-proBNP (pg/mL) / LVEDVi (mL/m ²)	0.320 (0.246, 0.391)	<.0001
NT-proBNP (pg/mL) / LVESVi (mL/m ²)	0.405 (0.335 <i>,</i> 0.470)	<.0001
NT-proBNP (pg/mL) / LAVi (mL/m ²)	0.263 (0.186, 0.338)	<.0001
NT-proBNP (pg/mL) / E/E'	0.269 (0.182, 0.353)	<.0001

diastolic filling velocity and early diastolic mitral annular velocity

Reverse cardiac remodeling (1)

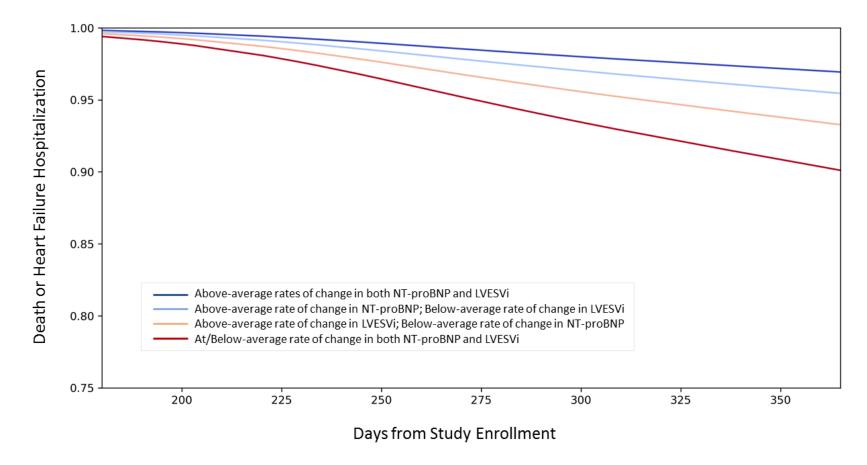
Baseline to 12 months: all P <.001



BL, baseline; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume index; LVESVi, left ventricular end-systolic volume index

Baseline to 12 months: all P <.001

BL, baseline; mL, milliliter; LA, left atrial; LAVi, left atrial volume index; E/e', ratio of early diastolic filling velocity and early diastolic mitral annular velocity; LVMi, left ventricular mass index.


 Reverse cardiac remodeling was comparable in each subgroup of interest *All P <0.001 except where noted*

New-onset HF/ACEI-ARB naïve (N=118)		NP < PARADIO	GM incl criteria* (N=292)	Not reaching target dose (N=278)		
Parameter	LS Mean change, BL to 12 months (95% CI)	Parameter	LS Mean change, BL to 12 months (95% CI)	Parameter	LS Mean change, BL to 12 months (95% CI)	
LVEF (%)	+12.8 (+11.05, +14.5)	LVEF (%)	+9.4 (+8.6, +10.3)	LVEF (%)	+9.4 (+8.4, +10.3)	
LVEDVi (mL/m²)	-13.81 (-15.78, -11.83)	LVEDVi (mL/m²)	-11.32 (-12.24, -10.40)	LVEDVi (mL/m²)	-10.99 (-12.21, -9.77)	
LVESVi (mL/m²)	-17.88 (-20.07, -15.68)	LVESVi (mL/m²)	-14.15 (-15.15, -13.15)	LVESVi (mL/m²)	-14.32 (-15.67, -12.97)	
LAVi (mL/m²)	-8.44 (-9.73, -7.15)	LAVi (mL/m²)	-7.06 (-7.54, -6.58)	LAVi (mL/m²)	-7.23 (-7.97, -6.50)	
E/e'	-2.60 (-3.83, -1.37)	E/e'	-0.93 (-1.43, -0.43)	E/e'	-0.46 (-1.32, +0.40); P =NS	

*NT-proBNP < 600 pg/mL if not hospitalized or < 400 pg/mL if hospitalized within the past 12 months; BNP < 150 pg/mL if not hospitalized or < 100 pg/mL if hospitalized for HF within the past 12 months; BL, baseline; LS, least-square; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume index; mL, milliliter; LAVi, left atrial volume index; E/E', ratio of early diastolic filling velocity and early diastolic mitral annular velocity; NP, natriuretic peptide.

Death or HF hospitalization by 12 months PROVE-HF

Patients with larger and faster reduction in NT-proBNP and LVESVi by 6 months had lowest rates of subsequent death or HF hospitalization by 12 months

Januzzi et al, Circ Heart Fail. 2020 Jun 2:CIRCHEARTFAILURE119006946

Conclusions

- Progressive, "forward" remodeling of the heart is a pivotal aspect of HFrEF progression and linked to risk for events
- "Reverse" remodeling is associated with lower event rates
- Therapies with favorable effects in HFrEF also tend to variably foster reverse remodeling
- Among available therapies that have the most substantial reverse remodeling effects are CRT, beta blockers, and sacubitril/valsartan

